Transcriptional Regulation of Human NANOG by Alternate Promoters in Embryonic Stem Cells
نویسندگان
چکیده
INTRODUCTION The potential of pluripotent stem cells to be used for cell therapy depends on a comprehensive understanding of the molecular mechanisms underlying their unique ability to specify cells of all germ layers while undergoing unlimited self-renewal. Alternative splicing and alternate promoter selection contribute to this mechanism by increasing the number of transcripts generated from a single gene locus and thus enabling expression of novel protein variants which may differ in their biological role. The homeodomain-containing transcription factor NANOG plays a critical role in maintaining the pluripotency of Embryonic Stem Cells (ESC). Therefore, a thorough understanding of the transcriptional regulation of the NANOG locus in ESCs is necessary. METHODS Regulatory footprints and transcription levels were identified for NANOG in human embryonic stem cells from data obtained using high-throughput sequencing methodologies. Quantitative real-time PCR following reverse transcription of RNA extracted human ESCs was used to validate the expression of transcripts from a region that extends upstream of the annotated NANOG transcriptional start. Promoter identification and characterization were performed using promoter reporter and electrophoretic mobility shift assays. RESULTS Transcriptionally active chromatin marking and transcription factor binding site enrichment were observed at a region upstream of the known transcriptional start site of NANOG. Expression of novel transcripts from this transcriptionally active region confirmed the existence of NANOG alternative splicing in human ESCs. We identified an alternate NANOG promoter of significant strength at this upstream region. We also discovered that NANOG autoregulates its expression by binding to its proximal downstream promoter. CONCLUSION Our study reveals novel transcript expression from NANOG in human ESCs, indicating that alternative splicing increases the diversity of transcripts originating from the NANOG locus and that these transcripts are expressed by an alternate promoter. Alternative splicing and alternate promoter usage collaborate to regulate NANOG, enabling its function in the maintenance of ESCs.
منابع مشابه
Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملA role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A
In this study, we show that NANOG, a master transcription factor, regulates S-phase entry in human embryonic stem cells (hESCs) via transcriptional regulation of cell cycle regulatory components. Chromatin immunoprecipitation combined with reporter-based transfection assays show that the C-terminal region of NANOG binds to the regulatory regions of CDK6 and CDC25A genes under normal physiologic...
متن کاملNuclear Architecture and Epigenetics of Lineage Choice
Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...
متن کاملCharacterization of the Nanog 5′-flanking Region in Bovine
Bovine embryonic stem cells have potential for use in research, such as transgenic cattle generation and the study of developmental gene regulation. The Nanog may play a critical role in maintenance of the undifferentiated state of embryonic stem cells in the bovine, as in murine and human. Nevertheless, efforts to study the bovine Nanog for pluripotency-maintaining factors have been insufficie...
متن کاملReprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره Suppl 10 شماره
صفحات -
تاریخ انتشار 2012